login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334006
Triangle read by rows: T(n,k) = (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)) for nonnegative k < n, n >= 1.
8
1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 7, 1, 3, 1, 3, 1, 1, 4, 1, 5, 1, 5, 1, 5, 1, 9, 1, 3, 1, 3, 1, 7, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 6, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 13, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 7, 1, 3, 1, 3
OFFSET
1,5
COMMENTS
If the sum of proper divisors of q in row q <= q, then q are 1, 2, 3, 4, 5, 8, 16, 17, 32, 64, 128, 256, 257, ...(union of Fermat primes and powers of 2).
EXAMPLE
Triangle T(n,k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
---+------------------------------------------------------
1 | 1;
2 | 1, 1;
3 | 1, 3, 1;
4 | 1, 2, 1, 3;
5 | 1, 5, 1, 1, 1;
6 | 1, 3, 1, 3, 1, 3;
7 | 1, 7, 1, 3, 1, 3, 1;
8 | 1, 4, 1, 5, 1, 5, 1, 5;
9 | 1, 9, 1, 3, 1, 3, 1, 7, 1;
10 | 1, 5, 1, 1, 1, 5, 1, 1, 1, 5;
11 | 1, 11, 1, 3, 1, 3, 1, 3, 1, 3, 1;
12 | 1, 6, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9;
13 | 1, 13, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1;
14 | 1, 7, 1, 3, 1, 3, 1, 7, 1, 3, 1, 3, 1, 7;
15 | 1, 15, 1, 3, 1, 15, 1, 3, 1, 15, 1, 3, 1, 15, 1;
16 | 1, 8, 1, 5, 1, 9, 1, 5, 1, 9, 1, 5, 1, 9, 1, 5;
17 | 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
...
For (n, k) = (7, 3), there are three nonnegative values of m < n such that m^3 == m (mod 7) (namely 0, 1, and 6) and one nonnegative value of m < n such that -m^3 == m (mod 7) (namely 0), so T(7,3) = 3/1 = 3.
PROG
(Magma) [[#[m: m in [0..n-1] | m^k mod n eq m]/#[m: m in [0..n-1] | -m^k mod n eq m]: k in [0..n-1]]: n in [1..17]];
(PARI) T(n, k) = sum(m=0, n-1, Mod(m, n)^k == m)/sum(m=0, n-1, -Mod(m, n)^k == m);
matrix(7, 7, n, k, k--; if (k>=n, 0, T(n, k))) \\ to see the triangle \\ Michel Marcus, Apr 17 2020
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Name corrected by Peter Kagey, Sep 12 2020
STATUS
approved