login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336663
2-Carmichael numbers: composite numbers n such that A^{n*(n-1)*(n+1)} = I for every matrix A from the group GL(2,Z/nZ).
1
4, 8, 9, 15, 16, 24, 25, 27, 32, 40, 45, 48, 49, 55, 63, 64, 72, 75, 80, 81, 96, 99, 104, 105, 112, 120, 121, 125, 128, 135, 144, 160, 165, 169, 171, 175, 176, 192, 195, 200, 216, 224, 225, 231, 240, 243, 256, 264, 273, 275, 288, 289, 320, 336, 343, 351, 360
OFFSET
1,1
COMMENTS
Theorem (an analogue of Korselt's criterion).
For a composite number n the following statements are equivalent:
(1) n is a 2-Carmichael number,
(2) for any prime divisor p of n, (p-1)*(p+1) | n*(n-1)*(n+1).
LINKS
Eugene Karolinsky and Dmytro Seliutin, Carmichael numbers for GL(m), arXiv:2001.10315 [math.NT], 2020.
MATHEMATICA
twoCarmQ[n_] := CompositeQ[n] && AllTrue[FactorInteger[n][[;; , 1]], Divisible[(n - 1)*n*(n + 1), #^2 - 1] &]; Select[Range[360], twoCarmQ] (* Amiram Eldar, Dec 29 2020 *)
PROG
(PARI) is(m) = {my(f=factor(m)[, 1], t=m*(m^2-1)); !isprime(m+(m<2)) && !sum(i=1, #f, t%(f[i]^2-1)); } \\ Jinyuan Wang, Jul 29 2020
CROSSREFS
Cf. A002997.
Sequence in context: A078177 A326692 A373375 * A329936 A023886 A158337
KEYWORD
nonn
AUTHOR
Dmytro Seliutin, Jul 29 2020
EXTENSIONS
More terms from Jinyuan Wang, Jul 29 2020
STATUS
approved