login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336556
a(n) = 1 if A336456(n) = Product_{p^e|n} A336456(p^e), and 0 otherwise. Here each p^e is the maximal power of prime p that divides k, and A336456(n) = A335915(sigma(sigma(n))).
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0
OFFSET
1
FORMULA
For all n >= 1, a(n) >= A336546(n).
PROG
(PARI)
is_fun_mult_on_n(fun, n) = { my(f=factor(n)); prod(k=1, #f~, fun(f[k, 1]^f[k, 2]))==fun(n); };
A000265(n) = (n>>valuation(n, 2));
A335915(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265((f[k, 1]^2)-1)^f[k, 2]))); };
A336456(n) = A335915(sigma(sigma(n)));
A336556(n) = is_fun_mult_on_n(A336456, n);
CROSSREFS
Cf. A336557 (positions of ones), A336558 (positions of zeros), A336559, A336560.
a(n) differs from A122261(1+n) for the first time at n=28, where a(28) = 1, while A122261(1+28) = 0.
Sequence in context: A357731 A336546 A209929 * A105586 A202022 A136522
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 25 2020
STATUS
approved