Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jul 27 2020 21:09:32
%S 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,0,0,
%T 0,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,1,0,1,1,0,1,0,0,1,1,1,1,1,1,0,0,1,1,
%U 0,0,1,1,1,1,1,1,0,1,1,1,1,0,1,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,1,0
%N a(n) = 1 if A336456(n) = Product_{p^e|n} A336456(p^e), and 0 otherwise. Here each p^e is the maximal power of prime p that divides k, and A336456(n) = A335915(sigma(sigma(n))).
%H Antti Karttunen, <a href="/A336556/b336556.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%F For all n >= 1, a(n) >= A336546(n).
%o (PARI)
%o is_fun_mult_on_n(fun,n) = { my(f=factor(n)); prod(k=1,#f~,fun(f[k,1]^f[k,2]))==fun(n); };
%o A000265(n) = (n>>valuation(n,2));
%o A335915(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265((f[k,1]^2)-1)^f[k,2]))); };
%o A336456(n) = A335915(sigma(sigma(n)));
%o A336556(n) = is_fun_mult_on_n(A336456,n);
%Y Cf. A336557 (positions of ones), A336558 (positions of zeros), A336559, A336560.
%Y Cf. A336456, A336546.
%Y a(n) differs from A122261(1+n) for the first time at n=28, where a(28) = 1, while A122261(1+28) = 0.
%K nonn
%O 1
%A _Antti Karttunen_, Jul 25 2020