login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336308
Decimal expansion of (5/32)*Pi.
3
4, 9, 0, 8, 7, 3, 8, 5, 2, 1, 2, 3, 4, 0, 5, 1, 9, 3, 5, 0, 9, 7, 8, 8, 0, 2, 8, 6, 3, 7, 4, 2, 2, 3, 2, 5, 6, 5, 5, 8, 0, 7, 7, 1, 8, 6, 5, 2, 3, 6, 0, 2, 8, 4, 5, 2, 7, 3, 3, 5, 0, 9, 2, 5, 4, 8, 0, 9, 6, 3, 1, 3, 4, 8, 2, 2, 2, 0, 1, 5, 6, 0, 3, 5, 6, 3, 0
OFFSET
0,1
COMMENTS
(5*Pi/32)*a^2 is the area of a simple folium also called ovoid, or Kepler egg whose polar equation is r = a*cos^3(t) and Cartesian equation is (x^2+y^2)^2 = a * x^3. See the curve at the Mathcurve link.
FORMULA
Equals Integral_{t=0..Pi} cos^6(t)/2 dt (area of simple folium).
From Amiram Eldar, Aug 13 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 1)^4 dx.
Equals Integral_{x=-1..1} x^3 * arcsin(x) dx. (End)
Equals 5/9 - 10*Sum_{n >= 1} (-1)^(n+1)/(u(n)*u(-n)), where the polynomial u(n) = (2*n - 1)^2*(4*n^2 - 4*n + 9)/3 satisfies the difference equation 16*u(n) = (2*n - 1)*(u(n+1) - u(n-1)) and has its zeros on the vertical line Re(z) = 1/2 in the complex plane. Cf. A336266. - Peter Bala, Mar 25 2024
EXAMPLE
0.4908738521234051935097880286374223256558077186523602...
MAPLE
evalf(5*Pi/32, 140);
MATHEMATICA
RealDigits[5*Pi/32, 10, 100][[1]] (* Amiram Eldar, Jul 17 2020 *)
PROG
(PARI) 5*Pi/32 \\ Michel Marcus, Jul 17 2020
CROSSREFS
Cf. A019692 (2*Pi for deltoid), A122952 (3*Pi for cycloid and nephroid), A180434 (2-Pi/2 for Newton strophoid), A197723 (3*Pi/2 for cardioid), A336266 (3*Pi/16 for double egg).
Sequence in context: A085675 A254133 A303984 * A070439 A298744 A272102
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Jul 17 2020
STATUS
approved