login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336298
Greatest prime < prime(n)/2.
2
2, 3, 5, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 29, 29, 31, 31, 31, 37, 41, 43, 47, 47, 47, 53, 53, 53, 61, 61, 67, 67, 73, 73, 73, 79, 83, 83, 89, 89, 89, 89, 97, 97, 103, 109, 113, 113, 113, 113, 113, 113, 127, 131, 131, 131, 137, 139, 139, 139, 151, 151
OFFSET
3,1
COMMENTS
The n-th prime appears A102820(n) times. - Flávio V. Fernandes, Apr 08 2021
A080191 lists the distinct terms of this sequence. - Flávio V. Fernandes, Jun 19 2021
FORMULA
a(n) = A151799(A000040(n)/2) for n >= 3. - Wesley Ivan Hurt, Nov 26 2020
EXAMPLE
Prime(3)/2 = 2.5, so a(3) = 2.
MATHEMATICA
z = 120; t = Table[NextPrime[Prime[n]/2], {n, 3, z}]; (* A039734, A079953 *)
u = NextPrime[t, -1] (* A336298 *)
t - u (* A336299 *)
Table[NextPrime[Prime[n]/2, -1], {n, 3, 80}] (* Wesley Ivan Hurt, Nov 26 2020 *)
PROG
(PARI) a(n) = precprime(prime(n)/2); \\ Michel Marcus, Nov 16 2020
(Python)
from sympy import prime, prevprime
def A336298(n):
return prevprime(prime(n)//2+1) # Chai Wah Wu, Nov 26 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 16 2020
STATUS
approved