login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336096
Irregular triangular array read by rows. T(n,k) is the number of unlabeled forests of distinct trees on n nodes containing exactly k trees.
0
1, 1, 1, 1, 2, 1, 3, 3, 6, 5, 1, 11, 11, 2, 23, 21, 5, 47, 46, 12, 106, 96, 27, 2, 235, 216, 62, 4, 551, 482, 142, 13, 1301, 1121, 328, 33, 3159, 2633, 763, 87, 1, 7741, 6334, 1809, 211, 6, 19320, 15414, 4322, 532, 18, 48629, 38132, 10488, 1301, 55, 123867, 95321, 25710, 3232, 157, 317955, 241029, 63802, 7996, 429, 3, 823065, 614862, 159817, 19973, 1149, 12
OFFSET
1,5
FORMULA
O.g.f.: Product_n>=1 (1+ y*x^n)^A000055(n).
EXAMPLE
1,
1,
1, 1,
2, 1,
3, 3,
6, 5, 1,
11, 11, 2,
23, 21, 5,
47, 46, 12,
106, 96, 27, 2
MATHEMATICA
nn = 20; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[0 == Series[f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; b = Drop[Flatten[CoefficientList[Series[r[x] - 1/2 (r[x]^2 - r[x^2]), {x, 0, nn}], x]], 1]; Map[Select[#, # > 0 &] &, Drop[CoefficientList[
Series[Product[(1 + y x^n)^b[[n]], {n, 1, nn}], {x, 0, nn}], {x, y}], 1]] // Grid
CROSSREFS
Cf. A035055 (row sums), A000055 (column 1), A095133.
Sequence in context: A056610 A341450 A343381 * A227774 A214920 A096373
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 09 2020
STATUS
approved