login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335730
a(n) is the number of smallest parts in the overpartitions of n having odd smallest part.
2
2, 4, 12, 20, 40, 72, 124, 200, 330, 520, 804, 1224, 1832, 2704, 3960, 5704, 8144, 11532, 16164, 22480, 31056, 42568, 57972, 78480, 105610, 141336, 188208, 249352, 328824, 431760, 564468, 734992, 953424, 1232144, 1586760, 2036580, 2605352, 3322584, 4224624, 5355920
OFFSET
1,1
LINKS
S. Ahlgren, K. Bringmann, and J. Lovejoy, l-adic properties of smallest parts functions, Advances in Mathematics, 228 (2011), 629-645.
K. Bringmann, J. Lovejoy, and R. Osburn, Rank and crank moments for overpartitions, Journal of Number Theory, 129 (2009), 1758-1772.
K. Bringmann, J. Lovejoy, and R. Osburn, Automorphic properties of generating functions for generalized rank moments and Durfee symbols, International Mathematics Research Notices, (2010), 238-260.
FORMULA
a(n) = A335724(n) - A335728(n).
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k))*(Sum_{n>=1} 2*n*q^n/(1-q^(2*n)) + Sum_{n=-oo..oo, n<>0} 4*(-1)^n*q^(n^2+n)*(1+q^(2*n)+q^(3*n))/((1-q^(2*n))*(1-q^(4*n)))).
EXAMPLE
There are 14 overpartitions of 4: [4], [4'], [3,1], [3,1'], [3',1], [3',1'], [2,2], [2',2], [2,1,1], [2,1',1], [2',1,1], [2',1',1], [1,1,1,1], [1',1,1,1], and so a(4) = 20.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jun 19 2020
STATUS
approved