Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jun 20 2020 09:38:06
%S 2,4,12,20,40,72,124,200,330,520,804,1224,1832,2704,3960,5704,8144,
%T 11532,16164,22480,31056,42568,57972,78480,105610,141336,188208,
%U 249352,328824,431760,564468,734992,953424,1232144,1586760,2036580,2605352,3322584,4224624,5355920
%N a(n) is the number of smallest parts in the overpartitions of n having odd smallest part.
%H S. Ahlgren, K. Bringmann, and J. Lovejoy, <a href="https://doi.org/10.1016/j.aim.2011.05.024">l-adic properties of smallest parts functions</a>, Advances in Mathematics, 228 (2011), 629-645.
%H K. Bringmann, J. Lovejoy, and R. Osburn, <a href="https://doi.org/10.1016/j.jnt.2008.10.017">Rank and crank moments for overpartitions</a>, Journal of Number Theory, 129 (2009), 1758-1772.
%H K. Bringmann, J. Lovejoy, and R. Osburn, <a href="https://doi.org/10.1093/imrn/rnp131">Automorphic properties of generating functions for generalized rank moments and Durfee symbols</a>, International Mathematics Research Notices, (2010), 238-260.
%F a(n) = A335724(n) - A335728(n).
%F G.f.: (Product_{k>=1} (1+q^k)/(1-q^k))*(Sum_{n>=1} 2*n*q^n/(1-q^(2*n)) + Sum_{n=-oo..oo, n<>0} 4*(-1)^n*q^(n^2+n)*(1+q^(2*n)+q^(3*n))/((1-q^(2*n))*(1-q^(4*n)))).
%e There are 14 overpartitions of 4: [4], [4'], [3,1], [3,1'], [3',1], [3',1'], [2,2], [2',2], [2,1,1], [2,1',1], [2',1,1], [2',1',1], [1,1,1,1], [1',1,1,1], and so a(4) = 20.
%Y Cf. A015128, A092269, A235792, A335724, A335728.
%K nonn
%O 1,1
%A _Jeremy Lovejoy_, Jun 19 2020