The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166869 a(n) = n * A056219(n+1). 3
 2, 4, 12, 20, 30, 54, 91, 120, 171, 250, 374, 504, 663, 854, 1170, 1568, 2074, 2628, 3325, 4180, 5313, 6754, 8602, 10656, 13100, 16042, 19683, 24024, 29464, 36000, 43834, 52768, 63228, 75582, 90510, 107856, 128575, 153178, 182208, 215400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 MAPLE N:= 100; b:= seq(coeff(series(add(x^((1/2)*n*(n+1))*mul(x +1/(1-x^k), k=1..n), n = 1..floor((1/2)*sqrt(9+8*N))), x, N+2), x, j), j = 1..N+1); seq(n*b[n+1], n=1..N); # G. C. Greubel, Nov 29 2019 MATHEMATICA max:= 100; b:= CoefficientList[Series[Sum[x^(n*(n+1)/2)*Product[(x +1/(1-x^k)), {k, n}], {n, Floor[Sqrt[9 +8*(max+5)]/2]}], {x, 0, max+5}], x]; Table[n*b[[n + 2]], {n, max}] (* G. C. Greubel, Nov 29 2019 *) PROG (Magma) max:=50; R:=PowerSeriesRing(Integers(), max); b:= Coefficients(R!( (&+[x^Binomial(n+1, 2)*(&*[x + 1/(1-x^j): j in [1..n]]): n in [1..Floor(Sqrt(9+8*max)/2)]]) )); [(n-1)*b[n]: n in [2..max-1]]; // G. C. Greubel, Nov 29 2019 (Sage) max=50; def A056219_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( sum(x^binomial(n+1, 2)*product((x + 1/(1-x^j)) for j in (1..n)) for n in (1..floor(sqrt(9+8*max)/2))) ).list() b=A056219_list(max); [(n-1)*b[n] for n in (2..max)] # G. C. Greubel, Nov 29 2019 CROSSREFS Cf. A056219, A166870. Sequence in context: A290440 A090922 A056228 * A168380 A335730 A308286 Adjacent sequences: A166866 A166867 A166868 * A166870 A166871 A166872 KEYWORD nonn AUTHOR Roger L. Bagula, Oct 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 19:08 EDT 2023. Contains 363019 sequences. (Running on oeis4.)