OFFSET
2,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..1000
MAPLE
N:= 100; b:= seq(coeff(series(add(x^((1/2)*n*(n+1))*mul(x +1/(1-x^k), k=1..n), n = 1..floor((1/2)*sqrt(9+8*N))), x, N+2), x, j), j = 1..N+1); seq(n*(n-1)*b[n+1], n=2..N); # G. C. Greubel, Nov 29 2019
MATHEMATICA
max:= 100; b:= CoefficientList[Series[Sum[x^(n*(n+1)/2)*Product[(x +1/(1-x^k)), {k, n}], {n, Floor[Sqrt[9 +8*(max+5)]/2]}], {x, 0, max+5}], x]; Table[n*b[[n + 2]], {n, 2, max}] (* G. C. Greubel, Nov 29 2019 *)
PROG
(Magma)
max:=50;
R<x>:=PowerSeriesRing(Integers(), max); b:= Coefficients(R!( (&+[x^Binomial(n+1, 2)*(&*[x + 1/(1-x^j): j in [1..n]]): n in [1..Floor(Sqrt(9+8*max)/2)]]) ));
[(n-1)*(n-2)*b[n]: n in [3..max-1]]; // G. C. Greubel, Nov 29 2019
(Sage)
max=50;
def A056219_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( sum(x^binomial(n+1, 2)*product((x + 1/(1-x^j)) for j in (1..n)) for n in (1..floor(sqrt(9+8*max)/2))) ).list()
b=A056219_list(max);
[(n-1)*(n-2)*b[n] for n in (3..max)] # G. C. Greubel, Nov 29 2019
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, Oct 22 2009
STATUS
approved