login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128205
a(n) = 2^(n-1)*A047240(n).
1
0, 1, 4, 24, 56, 128, 384, 832, 1792, 4608, 9728, 20480, 49152, 102400, 212992, 491520, 1015808, 2097152, 4718592, 9699328, 19922944, 44040192, 90177536, 184549376, 402653184, 822083584, 1677721600, 3623878656, 7381975040, 15032385536, 32212254720
OFFSET
0,3
COMMENTS
-a(n) is the Hankel transform of A030662(n) = binomial(2*n,n)-1.
FORMULA
a(n) = 2^(n-1)*(cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3)/3 + 2n - 1);
O.g.f.: x(1+2x+16x^2)/((2x-1)^2*(4x^2+2x+1)). a(n) = 2a(n-1) + 8a(n-3) - 16a(n-4). - R. J. Mathar, Apr 28 2008
MATHEMATICA
a047240[n_] := 6 Floor[n/3] + Mod[n, 3]
a128205[n_] := Map[2^(#-1) a047240[#]&, Range[0, n]]
a128205[25] (* data *) (* Hartmut F. W. Hoft, Mar 13 2017 *)
LinearRecurrence[{2, 0, 8, -16}, {0, 1, 4, 24}, 40] (* Harvey P. Dale, Feb 13 2024 *)
PROG
(PARI) concat(0, Vec(x*(1 + 2*x + 16*x^2) / ((1 - 2*x)^2*(1 + 2*x + 4*x^2)) + O(x^40))) \\ Colin Barker, Mar 13 2017
CROSSREFS
Sequence in context: A353250 A191778 A157625 * A085250 A166870 A124350
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 19 2007
STATUS
approved