login
A128205
a(n) = 2^(n-1)*A047240(n).
1
0, 1, 4, 24, 56, 128, 384, 832, 1792, 4608, 9728, 20480, 49152, 102400, 212992, 491520, 1015808, 2097152, 4718592, 9699328, 19922944, 44040192, 90177536, 184549376, 402653184, 822083584, 1677721600, 3623878656, 7381975040, 15032385536, 32212254720
OFFSET
0,3
COMMENTS
-a(n) is the Hankel transform of A030662(n) = binomial(2*n,n)-1.
FORMULA
a(n) = 2^(n-1)*(cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3)/3 + 2n - 1);
O.g.f.: x(1+2x+16x^2)/((2x-1)^2*(4x^2+2x+1)). a(n) = 2a(n-1) + 8a(n-3) - 16a(n-4). - R. J. Mathar, Apr 28 2008
MATHEMATICA
a047240[n_] := 6 Floor[n/3] + Mod[n, 3]
a128205[n_] := Map[2^(#-1) a047240[#]&, Range[0, n]]
a128205[25] (* data *) (* Hartmut F. W. Hoft, Mar 13 2017 *)
LinearRecurrence[{2, 0, 8, -16}, {0, 1, 4, 24}, 40] (* Harvey P. Dale, Feb 13 2024 *)
PROG
(PARI) concat(0, Vec(x*(1 + 2*x + 16*x^2) / ((1 - 2*x)^2*(1 + 2*x + 4*x^2)) + O(x^40))) \\ Colin Barker, Mar 13 2017
CROSSREFS
Sequence in context: A353250 A191778 A157625 * A085250 A166870 A124350
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 19 2007
STATUS
approved