login
A335607
Rectangular array by antidiagonals: T(n,k) = floor(n + k*r), where r = sqrt(2).
1
0, 1, 1, 2, 2, 2, 4, 3, 3, 3, 5, 5, 4, 4, 4, 7, 6, 6, 5, 5, 5, 8, 8, 7, 7, 6, 6, 6, 9, 9, 9, 8, 8, 7, 7, 7, 11, 10, 10, 10, 9, 9, 8, 8, 8, 12, 12, 11, 11, 11, 10, 10, 9, 9, 9, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 15, 15, 14, 14, 13, 13, 13, 12, 12, 11
OFFSET
0,4
COMMENTS
Column 0: Nonnegative integers.
Row 0: A001951 (Beatty sequence of sqrt(2)).
Main diagonal: (0,2,4,7,...): A003151 with 0 prepended.
FORMULA
T(n,k) = floor(n + k*r), where r = sqrt(2).
EXAMPLE
Northwest corner:
0 1 2 4 5 7 8 9 11
1 2 3 5 6 8 9 10 12
2 3 4 6 7 9 10 11 13
3 4 5 7 8 10 11 12 14
4 5 6 8 9 11 12 13 15
5 6 7 9 10 12 13 14 16
MATHEMATICA
t[n_, k_] := Floor[n + k*Sqrt[2]];
Grid[Table[t[n, k], {n, 0, 10}, {k, 0, 10}]] (* A335607 array *)
u = Table[t[n - k, k], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* A335607 seq *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 15 2020
STATUS
approved