login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335539
a(n) = Denominator(-4*n^2*Zeta(1 - n)*Zeta(n)*(1 - 2^(1 - n)) / Pi^n) for n >= 2, a(0) = 0, a(1) = 1.
3
1, 1, 9, 1, 1350, 1, 52920, 1, 1134000, 1, 11290752, 1, 74373979680000, 1, 8006169600, 1, 12147360825600000, 1, 56625794240311296000, 1, 3311787858630451200000, 1, 451287524451778560000, 1, 48168123888308960600064000000, 1, 10738530029998374912000000, 1
OFFSET
0,3
FORMULA
a(n) = denominator(n*Bernoulli(n)*Zeta(n)*(4-2^(3-n))/Pi^n)) for n >= 2.
EXAMPLE
Rational sequence starts: 0, 1, 1/9, 0, -7/1350, 0, 31/52920, 0, -127/1134000, 0, 365/11290752, ...
MAPLE
a := s -> `if`(s = 1 or s = 0, s, -4*s^2*Zeta(1 - s)*Zeta(s)*(1 - 2^(1 - s))/Pi^s):
seq(denom(a(s)), s = 0..34);
CROSSREFS
Cf. A335538 (numerators), A164555/A027642 (Bernoulli numbers).
Sequence in context: A046761 A373776 A352688 * A193373 A246564 A357318
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Jun 13 2020
STATUS
approved