login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335539 a(n) = Denominator(-4*n^2*Zeta(1 - n)*Zeta(n)*(1 - 2^(1 - n)) / Pi^n) for n >= 2, a(0) = 0, a(1) = 1. 3
1, 1, 9, 1, 1350, 1, 52920, 1, 1134000, 1, 11290752, 1, 74373979680000, 1, 8006169600, 1, 12147360825600000, 1, 56625794240311296000, 1, 3311787858630451200000, 1, 451287524451778560000, 1, 48168123888308960600064000000, 1, 10738530029998374912000000, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..27.

FORMULA

a(n) = denominator(n*Bernoulli(n)*Zeta(n)*(4-2^(3-n))/Pi^n)) for n >= 2.

EXAMPLE

Rational sequence starts: 0, 1, 1/9, 0, -7/1350, 0, 31/52920, 0, -127/1134000, 0, 365/11290752, ...

MAPLE

a := s -> `if`(s = 1 or s = 0, s, -4*s^2*Zeta(1 - s)*Zeta(s)*(1 - 2^(1 - s))/Pi^s):

seq(denom(a(s)), s = 0..34);

CROSSREFS

Cf. A335538 (numerators), A164555/A027642 (Bernoulli numbers).

Cf. A335264, A335265, A327497.

Sequence in context: A051231 A258437 A046761 * A193373 A246564 A327995

Adjacent sequences:  A335536 A335537 A335538 * A335540 A335541 A335542

KEYWORD

nonn,frac

AUTHOR

Peter Luschny, Jun 13 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 21:06 EDT 2021. Contains 342941 sequences. (Running on oeis4.)