login
A335316
Harmonic numbers (A001599) with a record harmonic mean of divisors.
3
1, 6, 28, 140, 270, 672, 1638, 2970, 8190, 27846, 30240, 167400, 237510, 332640, 695520, 1421280, 2178540, 2457000, 11981970, 14303520, 17428320, 23963940, 27027000, 46683000, 56511000, 71253000, 142990848, 163390500, 164989440, 191711520, 400851360, 407386980
OFFSET
1,2
COMMENTS
The corresponding record values are 1, 2, 3, 5, 6, 8, 9, 11, 15, ... (see the link for more values).
The terms 1, 6, 30240 and 332640 are also terms of A179971.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..70 (terms below 10^14)
EXAMPLE
The first 7 harmonic numbers are 1, 6, 28, 140, 270, 496 and 672. Their harmonic means of divisors (A001600) are 1, 2, 3, 5, 6, 5 and 8. The record values, 1, 2, 3, 5, 6 and 8 occur at 1, 6, 28, 140, 270 and 672, the first 6 terms of this sequence.
MATHEMATICA
h[n_] := n * DivisorSigma[0, n] / DivisorSigma[1, n]; hm = 0; s = {}; Do[h1 = h[n]; If[IntegerQ[h1] && h1 > hm, hm = h1; AppendTo[s, n]], {n, 1, 10^6}]; s
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 31 2020
STATUS
approved