login
A053783
(1+e)-harmonic numbers: harmonic mean of (1+e)-divisors is an integer.
3
1, 6, 28, 140, 728, 1638, 2184, 3640, 8008, 8190, 10920, 18620, 23808, 23895, 27846, 37128, 47790, 55860, 69160, 148960, 166656, 189810, 237510, 242060, 316680, 334530, 359600, 406215, 446880, 484120, 525690, 669060, 726180, 1029952, 1078800, 1089270, 1099170
OFFSET
1,2
COMMENTS
If k = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of k.
LINKS
MATHEMATICA
f[p_, e_] := (DivisorSigma[0, e] + 1)/(p^e + DivisorSum[e, p^(e - #) &]); aQ[n_] := IntegerQ[n * Times @@ (f @@@ FactorInteger[n])]; Select[Range[10^5], aQ] (* Amiram Eldar, Sep 07 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Naohiro Nomoto, Apr 14 2001
EXTENSIONS
More terms from Amiram Eldar, Sep 07 2019
STATUS
approved