login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335059
a(n) is the number of vertices in an n-gon formed by the straight line segments connecting vertex k to vertex 2k mod n.
4
3, 4, 6, 7, 11, 11, 14, 16, 26, 22, 36, 33, 40, 45, 61, 50, 76, 72, 81, 87, 111, 95, 131, 124, 137, 146, 176, 145, 201, 193, 208, 218, 256, 228, 286, 275, 294, 307, 351, 316, 386, 374, 395, 409, 461, 421, 501, 486, 511, 528, 586, 539, 631, 615, 642, 660, 726
OFFSET
3,1
COMMENTS
See A335057 for illustrations.
LINKS
FORMULA
Empirically for n <= 270.
Select the row in the table below for which d = n mod m. Then a(n) = (a*n^2+bn+c)/denom.
+=============================================+
| d | m | a | b | c | denom |
+---------------------------------------------+
| 1, 5 | 6 | 5 | 0 | 19 | 24 |
| 3 | 6 | 5 | -16 | 75 | 24 |
| 2, 10 | 12 | 5 | -18 | 64 | 24 |
| 4, 8 | 12 | 5 | -18 | 88 | 24 |
| 0 | 60 | 5 | -34 | 24 | 24 |
| 6, 18, 42, 54 | 60 | 5 | -34 | 192 | 24 |
| 12, 24, 36, 48 | 60 | 5 | -34 | 216 | 24 |
| 30 | 60 | 5 | -34 | 0 | 24 |
+=============================================+
PROG
(PARI) bc=[[5, 0, 19, 24], [5, -16, 75, 24], [5, -18, 64, 24], [5, -18, 88, 24], [5, -34, 24, 24], [5, -34, 192, 24], [5, -34, 216, 24], [5, -34, 0, 24]];
m=[[1, 6, 1], [5, 6, 1], [3, 6, 2], [2, 12, 3], [10, 12, 3], [4, 12, 4], [8, 12, 4], [0, 60, 5], [6, 60, 6], [18, 60, 6], [42, 60, 6], [54, 60, 6], [12, 60, 7], [24, 60, 7], [36, 60, 7], [48, 60, 7], [30, 60, 8]];
ix(n)=for(i=1, length(m), x=m[i]; if(n%x[2]==x[1], return(x[3]))); -1
a(n)=x=bc[ix(n)]; (x[1]*n^2+x[2]*n+x[3])/x[4]
vector(200, x, a(x+2))
CROSSREFS
Cf. A335057 (regions), A335058 (edges), A335129 (distinct lines).
Sequence in context: A064404 A294488 A364341 * A047514 A345716 A011975
KEYWORD
nonn
AUTHOR
Lars Blomberg, May 24 2020
STATUS
approved