login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of vertices in an n-gon formed by the straight line segments connecting vertex k to vertex 2k mod n.
4

%I #4 May 25 2020 23:27:39

%S 3,4,6,7,11,11,14,16,26,22,36,33,40,45,61,50,76,72,81,87,111,95,131,

%T 124,137,146,176,145,201,193,208,218,256,228,286,275,294,307,351,316,

%U 386,374,395,409,461,421,501,486,511,528,586,539,631,615,642,660,726

%N a(n) is the number of vertices in an n-gon formed by the straight line segments connecting vertex k to vertex 2k mod n.

%C See A335057 for illustrations.

%H Lars Blomberg, <a href="/A335059/b335059.txt">Table of n, a(n) for n = 3..270</a>

%F Empirically for n <= 270.

%F Select the row in the table below for which d = n mod m. Then a(n) = (a*n^2+bn+c)/denom.

%F +=============================================+

%F | d | m | a | b | c | denom |

%F +---------------------------------------------+

%F | 1, 5 | 6 | 5 | 0 | 19 | 24 |

%F | 3 | 6 | 5 | -16 | 75 | 24 |

%F | 2, 10 | 12 | 5 | -18 | 64 | 24 |

%F | 4, 8 | 12 | 5 | -18 | 88 | 24 |

%F | 0 | 60 | 5 | -34 | 24 | 24 |

%F | 6, 18, 42, 54 | 60 | 5 | -34 | 192 | 24 |

%F | 12, 24, 36, 48 | 60 | 5 | -34 | 216 | 24 |

%F | 30 | 60 | 5 | -34 | 0 | 24 |

%F +=============================================+

%o (PARI) bc=[[5,0,19,24],[5,-16,75,24],[5,-18,64,24],[5,-18,88,24],[5,-34,24,24],[5,-34,192,24],[5,-34,216,24],[5,-34,0,24]];

%o m=[[1,6,1],[5,6,1],[3,6,2],[2,12,3],[10,12,3],[4,12,4],[8,12,4],[0,60,5],[6,60,6],[18,60,6],[42,60,6],[54,60,6],[12,60,7],[24,60,7],[36,60,7],[48,60,7],[30,60,8]];

%o ix(n)=for(i=1,length(m),x=m[i];if(n%x[2]==x[1], return(x[3])));-1

%o a(n)=x=bc[ix(n)];(x[1]*n^2+x[2]*n+x[3])/x[4]

%o vector(200,x,a(x+2))

%Y Cf. A335057 (regions), A335058 (edges), A335129 (distinct lines).

%K nonn

%O 3,1

%A _Lars Blomberg_, May 24 2020