login
A345716
a(n) is the minimum number of nonattacking rooks required to attack every square on a size n right tetrahedral chessboard.
0
1, 1, 3, 4, 6, 7, 11, 12, 17, 19, 24, 26, 33, 35, 42, 46, 53, 57, 66, 70, 79, 85, 94, 100, 111, 117, 129, 136
OFFSET
1,3
COMMENTS
This sequence has been verified by brute force up to n = 27. It matches the covering numbers C(n+1, 3,2), A011975, for the first 14 terms, and it is conjectured that it matches for all even n. Link to the brute force program below. Computational runtime and increased complexity for minimum arrangements for bigger n account for the low number of terms. Other contributers: Fletcher Collins, Jennifer Gensler, Nick Jamesson, Chase Schwartzman, Evan Young, Dr. Nat Theim.
FORMULA
For n == 0,2 (mod 6): a(n) = n*(n+1)/6 (conjectured).
CROSSREFS
Possibly matches A011975 for all even n.
Cf. A001318.
Sequence in context: A364341 A335059 A047514 * A011975 A202112 A079249
KEYWORD
nonn,more
AUTHOR
STATUS
approved