

A334976


a(n) is the total number of down steps between the (n1)th and nth up steps in all 2Dyck paths of length 3*n. A 2Dyck path is a nonnegative path with steps (1, 2), (1, 1) that starts and ends at y = 0.


4



0, 0, 3, 19, 108, 609, 3468, 20007, 116886, 690690, 4122495, 24823188, 150629248, 920274804, 5656456104, 34954487967, 217044280458, 1353539406660, 8474029162305, 53241343026795, 335592121524660, 2121577490385885, 13448859209014320, 85467026778421860
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

For n = 1, there is no (n1)th up step, a(1) = 0 is the total number of down steps before the first up step.


LINKS

Table of n, a(n) for n=0..23.
Andrei Asinowski, Benjamin Hackl, Sarah J. Selkirk, Downstep statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.


FORMULA

a(0) = 0 and a(n) = binomial(3*n+4, n+1)/(3*n+4)  3*binomial(3*n+1, n)/(3*n+1) for n > 0.


EXAMPLE

For n = 2, the 2Dyck paths are UDDUDD, UDUDDD, UUDDDD. Therefore the total number of down steps between the first and second up steps is a(2) = 2+1+0 = 3.


MATHEMATICA

a[0] = 0; a[n_] := Binomial[3*n+4, n+1]/(3*n + 4)  3 * Binomial[3*n + 1, n]/(3*n + 1); Array[a, 24, 0]


PROG

(SageMath) [binomial(3*n + 4, n + 1)/(3*n + 4)  3*binomial(3*n + 1, n)/(3*n + 1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 19 2020


CROSSREFS

Cf. A334977, A334978, A334979, A334980.
Sequence in context: A072950 A240123 A130425 * A103005 A162354 A132959
Adjacent sequences: A334973 A334974 A334975 * A334977 A334978 A334979


KEYWORD

nonn,easy


AUTHOR

Sarah Selkirk, May 18 2020


STATUS

approved



