login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334973
Odd bi-unitary admirable numbers: the odd terms of A334972.
2
945, 43065, 46035, 48195, 80535, 354585, 403095, 430815, 437745, 442365, 458055, 2305875, 3525795, 4404105, 4891887, 5388495, 5803245, 6126645, 6220665, 6375105, 6537375, 7853625, 7981875, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 13351635, 23760555
OFFSET
1,1
COMMENTS
Of the first 10^4 bi-unitary admirable numbers only 11 are odd.
MATHEMATICA
fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], buAdmQ]
CROSSREFS
The bi-unitary version of A109729.
Intersection of A005408 and A334972.
Subsequence of A293186.
Sequence in context: A290034 A335055 A133818 * A334975 A289953 A112491
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 18 2020
STATUS
approved