login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334903
Numbers k such that k and k+2 are both infinitary practical numbers (A334901).
2
6, 40, 54, 918, 1240, 1288, 1408, 1480, 1672, 1720, 1768, 1974, 2440, 2728, 2838, 2968, 3198, 3318, 4134, 4264, 4422, 4480, 4758, 5248, 6102, 6270, 6424, 7590, 7830, 10624, 11128, 13110, 13182, 14248, 15496, 15928, 16254, 16768, 18088, 19864, 21112, 21318, 21630
OFFSET
1,1
LINKS
EXAMPLE
6 is a term since 6 and 6 + 2 = 8 are both infinitary practical numbers.
MATHEMATICA
bin[n_] := 2^(-1 + Position[Reverse @ IntegerDigits[n, 2], _?(# == 1 &)] // Flatten); f[p_, e_] := p^bin[e]; icomp[n_] := Flatten[f @@@ FactorInteger[n]]; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infPracQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, r = Sort[icomp[n]]; Do[If[r[[i]] > 1 + isigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[r]}]; ok]]]; seq = {}; q1 = infPracQ[2]; Do[q2 = infPracQ[n]; If[q1 && q2, AppendTo[seq, n - 2]]; q1 = q2, {n, 4, 10^4, 2}]; seq
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 16 2020
STATUS
approved