login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287681
Twin practical numbers: numbers k such that both k and k+2 are practical numbers.
8
2, 4, 6, 16, 18, 28, 30, 40, 54, 64, 78, 88, 126, 160, 196, 198, 208, 270, 304, 306, 340, 378, 390, 414, 448, 460, 462, 510, 520, 544, 558, 700, 702, 726, 798, 810, 858, 868, 880, 918, 928, 966, 990, 1024, 1120, 1216, 1230, 1240, 1288, 1300, 1350, 1408, 1456
OFFSET
1,1
COMMENTS
Melfi proved that this sequence is infinite.
LINKS
Giuseppe Melfi, A note on twin practical numbers, Le Matematiche, Vol. 57 No. 1 (2004), pp. 111-117.
Giuseppe Melfi, A survey on practical numbers, Rend. Sem. Mat. Univ. Pol. Torino, 53, (1995), 347-359.
Giuseppe Melfi, Twin practical numbers.
MATHEMATICA
practicalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
a={}; p1=False; k=2; While[Length[a]<100, p2=practicalQ[k]; If[p1 && p2, a=AppendTo[a, k-2]]; p1 = p2; k+=2]; a
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 29 2017
STATUS
approved