login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334902
Infinitary practical numbers (A334901) whose number of divisors is not a power of 2.
2
72, 360, 480, 504, 600, 672, 792, 864, 936, 1050, 1056, 1152, 1176, 1224, 1248, 1350, 1368, 1400, 1470, 1650, 1656, 1800, 1950, 1960, 2088, 2200, 2232, 2520, 2600, 2646, 2664, 2952, 3096, 3200, 3234, 3240, 3360, 3384, 3402, 3528, 3816, 3822, 3960, 4200, 4248, 4312
OFFSET
1,1
COMMENTS
Practical numbers (A005153) whose number of divisors is a power of 2 (A036537) are also infinitary practical numbers (A334901), since all of their divisors are infinitary.
Up to 10^6 there are 34768 infinitary practical numbers; of them only 8858 are in this sequence.
LINKS
MATHEMATICA
bin[n_] := 2^(-1 + Position[Reverse @ IntegerDigits[n, 2], _?(# == 1 &)] // Flatten); f[p_, e_] := p^bin[e]; icomp[n_] := Flatten[f @@@ FactorInteger[n]]; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infPracQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, r = Sort[icomp[n]]; Do[If[r[[i]] > 1 + isigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[r]}]; ok]]]; pow2Q[n_] := n/2^IntegerExponent[n, 2] == 1; Select[Range[4400], ! pow2Q[DivisorSigma[0, #]] && infPracQ[#] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 16 2020
STATUS
approved