login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334878
For any n > 0 with prime factorization Product_{k > 0} prime(k)^e_k (where prime(k) denotes the k-th prime number), let b_k = 1 + max_{k > 0} e_k; a(n) = Sum_{k > 0} e_k * b_k^(k-1).
1
0, 1, 2, 2, 4, 3, 8, 3, 6, 5, 16, 5, 32, 9, 6, 4, 64, 7, 128, 11, 10, 17, 256, 7, 18, 33, 12, 29, 512, 7, 1024, 5, 18, 65, 12, 8, 2048, 129, 34, 19, 4096, 11, 8192, 83, 15, 257, 16384, 9, 54, 19, 66, 245, 32768, 13, 20, 67, 130, 513, 65536, 14, 131072, 1025
OFFSET
1,3
COMMENTS
In other words, a(n) encodes the prime factorization of n in base 1 + A051903(n).
Every nonnegative integer appears finitely many times in this sequence.
LINKS
FORMULA
a(2^e) = e for any e >= 0.
a(prime(k)) = 2^(k-1) for any k > 0.
a(prime(k)^e) = e*(e+1)^(k-1) for any k > 0 and e >= 0.
a(n) = A087207(n) for any squarefree number n.
EXAMPLE
For n = 84:
- 84 = 7 * 3 * 2^2 = prime(4) * prime(2) * prime(1)^2,
- b_84 = 1 + 2 = 3,
- so a(84) = 1*3^(4-1) + 1*3^(2-1) + 2*3^(1-1) = 32.
PROG
(PARI) a(n) = { if (n==1, 0, my (f=factor(n), b=1+vecmax(f[, 2]~)); sum(k=1, #f~, f[k, 2]*b^(primepi(f[k, 1])-1))) }
CROSSREFS
Sequence in context: A334871 A048675 A162474 * A285330 A048676 A049287
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, May 14 2020
STATUS
approved