OFFSET
1,1
COMMENTS
If (1/2^(n-1))-1 divided by n results in a finite decimal number, n is prime or pseudoprime. Poulet numbers: A001567 are a subsequence:
if n|(2^(n-1)-1) then the denominator of ((1/2^(n-1))-1)/n is a power of 2, so the decimal expansion of the fraction is finite. (1/2^n)-1 is < 0 for n >= 1.
EXAMPLE
10 is a term because ((1/2^9)-1)/10 = -0.0998046875;
12 is not a term because ((1/2^11)-1)/12 = -0.08329264322916666666666... .
MATHEMATICA
A003592Q[n_] := n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5] == 1; seqQ[n_] := CompositeQ[n] && A003592Q[Denominator[((1/2^(n - 1)) - 1)/n]]; Select[Range[2000], seqQ] (* Amiram Eldar, May 14 2020 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Davide Rotondo, May 13 2020
EXTENSIONS
More terms from Amiram Eldar, May 14 2020
STATUS
approved