login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334836
a(n) = A334769(k) where k is the first position of n in A334796.
4
151, 543, 10707, 33151, 345283, 2213663, 33629695, 134297599, 1109207903, 8657682303, 73283989519
OFFSET
2,1
COMMENTS
This sequence indexes the smallest number m = A334769(k) that, when expressed in binary b(k), generates a rotationally symmetrical XOR-triangle (RST) that features a central zero-triangle (CZT) with frame width n.
A "frame width" is the number of iterations j required to generate the first run of zeros in a CZT of an RST.
Let L = A070939(m) for m in A334769. For RSTs, j > 1, since a solid run of L 1s given a recursive XOR function applied to each pair of adjacent bits, would give rise to a solid run of (L - 1) zeros in the next iteration, and every iteration thereafter consists of zeros. Therefore m = (2(L - 1) - 1) is not rotationally symmetrical except when L = 1.
Sequence A334556 lists numbers m that produce RSTs; A334769 those RSTs that feature CZTs. Sequence A334796 renders the frame widths j for numbers in A334769.
For n = 7, A070939(a(n)) > 3(7) + 1 = 22, but is likely much larger, given a(6). a(7) is likely a number with more than 40 bits.
LINKS
Michael De Vlieger, Diagram montage showing XOR-triangles of each a(n) for 2 <= n <= 12.
EXAMPLE
a(2) = 151; Rotationally symmetrical XOR-triangle generated by 151, replacing 0s with "." for clarity, showing 2 bits to reach the central zero triangle of side length s = 2:
1 . . 1 . 1 1 1
1 . 1 1 1 . .
1 1 . . 1 .
. 1 . 1 1
1 1 1 .
. . 1
. 1
1
a(3) = 543; RST generated by 543, showing 3 bits to reach the CZT of side length s = 1 = A334770(3):
1 . . . . 1 1 1 1 1
1 . . . 1 . . . .
1 . . 1 1 . . .
1 . 1 . 1 . .
1 1 1 1 1 .
. . . . 1
. . . 1
. . 1
. 1
1
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Michael De Vlieger, May 13 2020
STATUS
approved