login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334813
Arithmetic numbers k (A003601) such that sigma(k)/d(k) is also an arithmetic number, where d(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).
3
1, 5, 6, 11, 13, 14, 15, 20, 29, 37, 38, 39, 41, 43, 44, 45, 49, 53, 54, 56, 57, 59, 60, 61, 65, 68, 73, 78, 83, 85, 86, 87, 89, 95, 96, 97, 101, 102, 107, 109, 110, 111, 113, 114, 116, 118, 123, 125, 129, 131, 134, 135, 137, 139, 142, 143, 145, 147, 150, 153
OFFSET
1,2
COMMENTS
The number of terms not exceeding 10^k for k = 1, 2, ... is 3, 36, 426, 4744, 50442, 533806, 5585745, 58013810, 599272790, 6162302702, ... Apparently, this sequence has asymptotic density ~0.6.
Includes all the primes p such that (p+1)/2 is an odd prime, i.e., A005383 without the first term 3.
If p is in A240971 then p^2 is a term.
LINKS
EXAMPLE
5 is a term since sigma(5)/d(5) = 6/2 = 3 is an integer, and so is sigma(3)/d(3) = 4/2 = 2.
MATHEMATICA
rat[n_] := DivisorSigma[1, n]/DivisorSigma[0, n]; Select[Range[200], IntegerQ[(r = rat[#])] && IntegerQ[rat[r]] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 12 2020
STATUS
approved