login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334730
a(n) = Product_{d|n} gcd(tau(d), pod(d)) where tau(k) is the number of divisors of k (A000005) and pod(k) is the product of divisors of k (A007955).
2
1, 2, 1, 2, 1, 8, 1, 8, 3, 8, 1, 48, 1, 8, 1, 8, 1, 144, 1, 16, 1, 8, 1, 1536, 1, 8, 3, 16, 1, 256, 1, 16, 1, 8, 1, 7776, 1, 8, 1, 512, 1, 256, 1, 16, 9, 8, 1, 3072, 1, 16, 1, 16, 1, 1152, 1, 512, 1, 8, 1, 36864, 1, 8, 9, 16, 1, 256, 1, 16, 1, 256, 1, 2985984, 1, 8, 3, 16, 1, 256, 1
OFFSET
1,2
LINKS
FORMULA
a(p) = 1 for p = odd primes (A065091).
EXAMPLE
a(6) = gcd(tau(1), pod(1)) * gcd(tau(2), pod(2)) * gcd(tau(3), pod(3)) * gcd(tau(6), pod(6)) = gcd(1, 1) * gcd(2, 2) * gcd(2, 3) * gcd(4, 36) = 1 * 2 * 1 * 4 = 8.
MATHEMATICA
a[n_] := Product[GCD[DivisorSigma[0, d], d^(DivisorSigma[0, d]/2)], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 09 2020 *)
PROG
(Magma) [&*[GCD(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
(PARI)
pod(n) = vecprod(divisors(n));
a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(numdiv(d[k]), pod(d[k]))); \\ Michel Marcus, May 09-11 2020
CROSSREFS
Cf. A334729 (Product_{d|n} gcd(tau(d), sigma(d))), A334662 (Sum_{d|n} gcd(tau(d), pod(d))).
Cf. A000005 (tau(n)), A007955 (pod(n)), A306671 (gcd(tau(n), pod(n))).
Sequence in context: A011128 A245595 A146003 * A201453 A260897 A342920
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 09 2020
STATUS
approved