login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201453
Triangle of numerators of dual coefficients of Faulhaber
2
1, 1, -1, 1, -1, 2, 1, -2, 1, -8, 1, -10, 11, -4, 8, 1, -5, 29, -5, 8, -32, 1, -7, 7, -33, 26, -8, 6112, 1, -28, 602, -100, 313, -112, 512, -3712, 1, -4, 70, -1268, 593, -1816, 1936, -2944, 362624, 1, -15, 38, -566, 9681, -1481, 31568, -960, 2432, -71706112, 1, -55, 176, -1606, 5401, -54499, 290362, -58864, 44736, -285568, 3341113856
OFFSET
0,6
COMMENTS
Sum((k*(k + 1))^(m), k=0..N-1)=Sum(F(m,i)*N^(2*m-2*i+1),i=0..m), m=0,1,2,...
The coefficients F(m,i) are dual to Faulhaber coefficients, because they are obtained from the inverse expression Sum((k*(k + 1))^(m), k=0..N-1) to Faulhaber's formula from Sum((k)^(2*m-1), k=0..N-1) and there holds the identity F(m+i-1,i)=(-1)^i Fe(-m,i), where Fe(-m,i)=A093558(-m,i)/A093559(-m,i) is a Faulhaber coefficient for the sums of even powers of the first N-1 integers (for details see the reference 1, from p. 19).
LINKS
A. Dzhumadil'daev, D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.6
FORMULA
a(m,k)=numerator(F(m,k)) with:
1) recursion, F(x,0) = 1/(2*x+1) and 2*(m-k)*(2*m-2*k+1)*F(m,k)=2*m*(2*m-1)*F(m-1,k)+m*(m-1)*F(m-2,k-1);
2) explicit formula F(m,k) = (1/(2*m-2*k+1))sum(binomial(m,2*k-i)*binomial(2*m-2*k+i,i) Bernoulli(i), i=0..2*k)
EXAMPLE
Triangle begins:
1;
1, -1;
1, -1, 2;
1, -2, 1, -8;
1, -10, 11, -4, 8;
1, -5, 29, -5, 8, -32;
1, -7, 7, -33, 26, -8, 6112;
1, -28, 602, -100, 313, -112, 512, -3712;
1, -4, 70, -1268, 593, -1816, 1936, -2944, 362624;
1, -15, 38, -566, 9681, -1481, 31568, -960, 2432, -71706112; etc.
MATHEMATICA
f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}];
a[m_, k_] := f[m, k] // Numerator;
Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten
PROG
(Magma) [Numerator((1/(2*m-2*k+1))*&+[Binomial(m, 2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // Bruno Berselli, Jan 21 2013
CROSSREFS
Cf. A093558, A093559, A201454 (denominators).
Sequence in context: A245595 A146003 A334730 * A260897 A342920 A066772
KEYWORD
sign,frac,tabl,easy
AUTHOR
Damir Yeliussizov, Jan 09 2013
STATUS
approved