login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334710
Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four points from an n X k grid so that three of them form a triangle of nonzero area and the extra point is on one of the edges of the triangle.
7
0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 32, 48, 32, 0, 0, 100, 168, 168, 100, 0, 0, 240, 456, 532, 456, 240, 0, 0, 490, 990, 1312, 1312, 990, 490, 0, 0, 896, 1920, 2652, 3088, 2652, 1920, 896, 0, 0, 1512, 3360, 4972, 5964, 5964, 4972, 3360, 1512, 0, 0, 2400, 5520, 8420, 10816, 11340, 10816, 8420, 5520, 2400, 0
OFFSET
1,8
COMMENTS
Computed by Tom Duff, Jun 15 2020
EXAMPLE
The initial rows of the array are:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 6, 32, 100, 240, 490, 896, 1512, 2400, 3630, 5280, ...
0, 6, 48, 168, 456, 990, 1920, 3360, 5520, 8550, 12720, 18216, ...
0, 32, 168, 532, 1312, 2652, 4972, 8420, 13452, 20480, 29980, 42288, ...
0, 100, 456, 1312, 3088, 5964, 10816, 17768, 27840, 41652, 60040, 83448, ...
0, 240, 990, 2652, 5964, 11340, 20142, 32436, 50004, 73704, 105282, 144936, ...
0, 490, 1920, 4972, 10816, 20142, 35264, 55916, 84960, 123690, 174976, 238512, ...
0, 896, 3360, 8420, 17768, 32436, 55916, 88088, 132708, 191588, 268972, 363876, ...
0, 1512, 5520, 13452, 27840, 50004, 84960, 132708, 198912, 285312, 397968, 534888, ...
0, 2400, 8550, 20480, 41652, 73704, 123690, 191588, 285312, 407744, 566046, 757008, ...
...
The initial antidiagonals are:
0
0, 0
0, 0, 0
0, 6, 6, 0
0, 32, 48, 32, 0
0, 100, 168, 168, 100, 0
0, 240, 456, 532, 456, 240, 0
0, 490, 990, 1312, 1312, 990, 490, 0
0, 896, 1920, 2652, 3088, 2652, 1920, 896, 0
0, 1512, 3360, 4972, 5964, 5964, 4972, 3360, 1512, 0
0, 2400, 5520, 8420, 10816, 11340, 10816, 8420, 5520, 2400, 0
0, 3630, 8550, 13452, 17768, 20142, 20142, 17768, 13452, 8550, 3630, 0
...
CROSSREFS
The main diagonal is A334713.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.
Sequence in context: A055667 A281080 A283347 * A283203 A155742 A364406
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 15 2020.
STATUS
approved