login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055667 Number of Eisenstein-Jacobi primes of norm n. 7
0, 0, 0, 6, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

These are the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2.

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, A16.

L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.

LINKS

Table of n, a(n) for n=0..99.

FORMULA

a(n) = 6 * A055668(n) - Franklin T. Adams-Watters, May 05 2006

EXAMPLE

There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.

MATHEMATICA

a[3] = 6; a[p_ /; PrimeQ[p] && Mod[p, 6] == 1] = 12; a[n_ /; PrimeQ[p = Sqrt[n]] && Mod[p, 3] == 2] = 6; a[_] = 0; Table[a[n], {n, 0, 99}] (* Jean-Fran├žois Alcover, Oct 24 2013, after Franklin T. Adams-Watters *)

CROSSREFS

Cf. A055664-A055668, A055025-A055029, A135461, A135462. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice.

Sequence in context: A318537 A006806 A002892 * A281080 A283347 A334710

Adjacent sequences:  A055664 A055665 A055666 * A055668 A055669 A055670

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Jun 09 2000

EXTENSIONS

More terms from Franklin T. Adams-Watters, May 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 12:55 EDT 2022. Contains 354033 sequences. (Running on oeis4.)