OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Goldbach Partition
Wikipedia, Goldbach's conjecture
FORMULA
a(n) = Sum_{i=1..n} c(i) * c(2*n-i) * ((1 - c(i-2))*(1 - c(2*n-i-2)) + 2*(1 - [c(i-2) = c(2*n-i-2)]) + 4*c(i-2)*c(2*n-i-2), where [] is the Iverson bracket and c is the prime characteristic (A010051).
EXAMPLE
a(5) = 6; 2*5 = 10 has 2 Goldbach partitions, (7,3) and (5,5), so we start with two rectangles of size 7 X 3 and 5 X 5. Note that the 7 X 3 rectangle can be cut into two rectangles of size 5 X 3 and 3 X 2 (both prime), but since the cuts must be perpendicular to each other (and not parallel), no smaller rectangles with prime side lengths can be made. Furthermore, the 5 X 5 rectangle can be cut into 4 rectangles with prime side lengths using two perpendicular cuts: 3 X 3, 3 X 2, 2 X 3, and 2 X 2. This makes 6 total rectangles.
MATHEMATICA
Table[Sum[((1 - PrimePi[i - 2] + PrimePi[i - 3]) (1 - PrimePi[2 n - i - 2] + PrimePi[2 n - i - 3]) + 2 (1 - KroneckerDelta[PrimePi[i - 2] - PrimePi[i - 3], PrimePi[2 n - i - 2] - PrimePi[2 n - i - 3]]) + 4 (PrimePi[i - 2] - PrimePi[i - 3]) (PrimePi[2 n - i - 2] - PrimePi[2 n - i - 3])) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]), {i, n}], {n, 100}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 17 2020
STATUS
approved