OFFSET
1,2
COMMENTS
These numbers m are equal to the integer part of their m-th root multiplied by 10 to the power of the number of digits of m-1.
The last nonzero digits of the terms are conjectured to be the Beatty sequence for log(10), A059545.
FORMULA
a(n+1) = floor((10^(n/10^n))*10^n) (conjectured).
a(n) = 10^(n-1) + floor((n-1)*log(10)) (conjectured). - David A. Corneth, Apr 19 2020
EXAMPLE
12^(1/12) = 1.23007..., 104^(1/104) = 1.0457..., 100011^(1/100011) = 1.00011512...
PROG
(Python)
# for the first 6 terms
import math
for n in range(1, 1000000):
if math.floor((n**(1/n))*10**(len(str(n))-1)) == n:
print(n)
(PARI) isok(m) = floor(10^(#Str(m)-1)*sqrtn(m, m)) == m; \\ Michel Marcus, Apr 17 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Alaa A. Nasr, Apr 17 2020
EXTENSIONS
More terms from David A. Corneth, Apr 19 2020
STATUS
approved