login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334068
Negative of numerator of y-coordinate of -(2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
1
1, 0, 3, 35, -92, 8555, 162024, 2882165, 3906507129, -88075171080, 260151768440137, 304986999070045520, -100886180199254542253, 1600059682932627475385835, 2620000542207768964443625516
OFFSET
0,3
LINKS
FORMULA
a(n) = A028934(-1-n) = A028942(-2*n-1) for all n in Z.
0 = a(n)*a(n+8) -145*a(n+1)*a(n+7) +3225*a(n+2)*a(n+6) -18705*a(n+3)*a(n+5) +14964*a(n+4)*a(n+4) for all n in Z.
EXAMPLE
-P = (0, -1), -3P = (-1 ,0), -5P = (1/4, -3/8), -7P = (-5/9, -35/27).
MAPLE
f:= proc(m) option remember; -(-145*procname(m - 7)*procname(m - 1) + 3225*procname(m - 6)*procname(m - 2) - 18705*procname(m - 5)*procname(m - 3) + 14964*procname(m - 4)^2)/procname(m - 8) end proc:
Data:= [1, 0, 3, 35, -92, 8555, 162024, 2882165, 3906507129, -88075171080]:
for i from 0 to 9 do f(i):= Data[i+1] od:
map(f, [$0..20]); # Robert Israel, Oct 06 2020
PROG
(PARI) {a(n) = -numerator(ellmul(ellinit([0, 0, 1, -1, 0]), [0, 0], -2*n-1)[2])};
CROSSREFS
Sequence in context: A054287 A176761 A246824 * A001539 A113854 A231645
KEYWORD
sign
AUTHOR
Michael Somos, Apr 13 2020
STATUS
approved