login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333877
a(n) is the largest prime 2^(n-1) <= p < 2^n maximizing the Hamming weight of all primes in this interval.
3
3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65519, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388587, 16777213, 33546239, 67108859, 134217467, 260046847, 536870909, 1073741567, 2147483647, 4294967291, 8589934583, 16911433727
OFFSET
2,1
COMMENTS
This differs from A014234 at n=1 and then first at n=16: a(16) = 65519 != 65521 = A014234(16). - Alois P. Heinz, Apr 25 2020
LINKS
MAPLE
a:= proc(n) option remember; local i, p;
for i from 0 do p:= max(select(isprime, map(l-> add(l[j]*
2^(j-1), j=1..n), combinat[permute]([1$(n-i), 0$i]))));
if p>0 then break fi
od; p
end:
seq(a(n), n=2..30); # Alois P. Heinz, Apr 23 2020
MATHEMATICA
a[n_] := a[n] = MaximalBy[{#, DigitCount[#, 2, 1]}& /@ Select[Range[ 2^(n-1), 2^n-1], PrimeQ], Last][[-1, 1]];
Table[Print[n, " ", a[n]]; a[n], {n, 2, 30}] (* Jean-François Alcover, Nov 09 2020 *)
PROG
(PARI) for(n=2, 30, my(hmax=0, pmax); forprime(p=2^(n-1), 2^n, my(h=hammingweight(p)); if(h>=hmax, pmax=p; hmax=h)); print1(pmax, ", "))
(Python)
from sympy import isprime
from sympy.utilities.iterables import multiset_permutations
def A333877(n):
for i in range(n-1, -1, -1):
q = 2**n-1
for d in multiset_permutations('0'*i+'1'*(n-1-i)):
p = q-int(''.join(d), 2)
if isprime(p):
return p # Chai Wah Wu, Apr 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Apr 08 2020
STATUS
approved