login
A333875
Numbers k such that both k and k+1 are squarefree and phi(k) = phi(k+1), where phi is the Euler totient function (A000010).
2
1, 194, 3705, 5186, 25545, 388245, 1659585, 2200694, 2521694, 2619705, 3289934, 3794834, 4002405, 5781434, 6245546, 6372794, 8338394, 12352934, 14144954, 16475414, 22632285, 23553705, 37762394, 40588485, 43834754, 44485454, 59603954, 63298785, 76466985, 81591194
OFFSET
1,2
COMMENTS
Numbers k such that A000010(k) = A000010(k+1) = A173557(k) = A173557(k+1).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1166 (terms below 10^13, calculated from the b-file at A001274)
Daeyeoul Kim, Umit Sarp, and Sebahattin Ikikardes, Certain combinatoric convolution sums arising from Bernoulli and Euler Polynomials, Miskolc Mathematical Notes, No. 20, Vol. 1 (2019): pp. 311-330.
EXAMPLE
1 is a term since 1 and 2 are both squarefree and phi(1) = phi(2) = 1.
MATHEMATICA
s = {}; p1 = 1; Do[p2 = If[SquareFreeQ[n], EulerPhi[n], 0]; If[p2 > 0 && p2 == p1, AppendTo[s, n-1]]; p1 = p2, {n, 2, 10^5}]; s
PROG
(PARI) for(k=1, 10^7, if(issquarefree(k), if(issquarefree(k+1), if(eulerphi(k)==eulerphi(k+1), print1(k, ", "))))) \\ Hugo Pfoertner, Apr 08 2020
CROSSREFS
Subsequence of A001274.
Sequence in context: A205356 A281807 A220160 * A183583 A296893 A045073
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 08 2020
STATUS
approved