OFFSET
1,2
COMMENTS
Inverse Moebius transform of A047994.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} uphi(k) * x^k / (1 - x^k).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(e+1) - e*p + e - 1)/(p-1).
MATHEMATICA
uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[uphi[d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
A023900[n_] := Sum[MoebiusMu[d] d, {d, Divisors[n]}]; A062949[n_] := Sum[EulerPhi[d] DivisorSigma[0, d], {d, Divisors[n]}]; a[n_] := Sum[A023900[d] A062949[n/d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
f[p_, e_] := (p^(e+1) - e*p + e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 12 2022 *)
PROG
(PARI) uphi(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); \\ A047994
a(n) = sumdiv(n, d, uphi(d)); \\ Michel Marcus, Mar 31 2020
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Mar 31 2020
STATUS
approved