login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333645
a(n) = Sum_{d|n} uphi(d).
1
1, 2, 3, 5, 5, 6, 7, 12, 11, 10, 11, 15, 13, 14, 15, 27, 17, 22, 19, 25, 21, 22, 23, 36, 29, 26, 37, 35, 29, 30, 31, 58, 33, 34, 35, 55, 37, 38, 39, 60, 41, 42, 43, 55, 55, 46, 47, 81, 55, 58, 51, 65, 53, 74, 55, 84, 57, 58, 59, 75, 61, 62, 77, 121, 65, 66, 67, 85, 69, 70
OFFSET
1,2
COMMENTS
Inverse Moebius transform of A047994.
LINKS
FORMULA
G.f.: Sum_{k>=1} uphi(k) * x^k / (1 - x^k).
a(n) = Sum_{d|n} A023900(d) * A062949(n/d).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(e+1) - e*p + e - 1)/(p-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - (2*p-1)/p^3) = A152649 * A065464 = 0.5793804872... . (End)
MATHEMATICA
uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[uphi[d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
A023900[n_] := Sum[MoebiusMu[d] d, {d, Divisors[n]}]; A062949[n_] := Sum[EulerPhi[d] DivisorSigma[0, d], {d, Divisors[n]}]; a[n_] := Sum[A023900[d] A062949[n/d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
f[p_, e_] := (p^(e+1) - e*p + e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 12 2022 *)
PROG
(PARI) uphi(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); \\ A047994
a(n) = sumdiv(n, d, uphi(d)); \\ Michel Marcus, Mar 31 2020
CROSSREFS
Sequence in context: A361676 A069208 A346616 * A066113 A363156 A214881
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Mar 31 2020
STATUS
approved