login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333603
Number of directed Hamiltonian walks from NW to SW corners of a 7 X (2*n+1) grid.
1
1, 32, 1584, 88418, 4999752, 283163450, 16039767268, 908585449166, 51467614908516, 2915428131919456, 165146980589118258, 9354895388703582168, 529916244425510621368, 30017569886372177468776, 1700371542421991554910438, 96319035592388073867700014, 5456076149237165677047910650
OFFSET
0,2
LINKS
FORMULA
Conjecture: a(n)= 85*a(n-1) -1932*a(n-2) +20403*a(n-3) -116734*a(n-4) +386724*a(n-5) -815141*a(n-6) +1251439*a(n-7) -1690670*a(n-8) +2681994*a(n-9) -4008954*a(n-10) +3390877*a(n-11) -1036420*a(n-12) -178842*a(n-13) +92790*a(n-14) +17732*a(n-15) -5972*a(n-16) +1728*a(n-17) +144*a(n-18). - R. J. Mathar, Mar 13 2023
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A271592(n, k):
if k == 1: return 1
universe = tl.grid(k - 1, n - 1)
GraphSet.set_universe(universe)
start, goal = 1, n
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def A333603(n):
return A271592(7, 2 * n + 1)
print([A333603(n) for n in range(20)])
CROSSREFS
Row n=7 of A271592 (with 0 omitted).
Cf. A333582.
Sequence in context: A316820 A317570 A240459 * A264074 A264187 A223054
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 28 2020
STATUS
approved