login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333574
Number of Hamiltonian paths in the n X 2 grid graph which start at any of the n vertices on left side of the graph and terminate at any of the n vertices on the right side.
2
1, 2, 4, 6, 10, 14, 20, 26, 34, 42, 52, 62, 74, 86, 100, 114, 130, 146, 164, 182, 202, 222, 244, 266, 290, 314, 340, 366, 394, 422, 452, 482, 514, 546, 580, 614, 650, 686, 724, 762, 802, 842, 884, 926, 970, 1014, 1060, 1106, 1154, 1202, 1252, 1302, 1354, 1406, 1460
OFFSET
1,2
COMMENTS
Conjecture: Numbers k such that A339399(k) = A103128(k). - Wesley Ivan Hurt, Nov 19 2021
FORMULA
G.f.: x*(1+2*x*(1-x^2+x^3)/((1+x)*(1-x)^3)).
From Colin Barker, Mar 27 2020: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5.
a(n) = (9 + (-1)^(1+n) - 4*n + 2*n^2) / 4 for n>1. (End)
E.g.f.: ((4 - x + x^2)*cosh(x) + (5 - x + x^2)*sinh(x) - 2*(2 + x))/2. - Stefano Spezia, Jun 14 2023
EXAMPLE
a(1) = 1;
+--+
a(2) = 2;
+ + *--*
| | | |
*--* + +
a(3) = 4;
+ + +--* *--+ *--*
| | | | | |
* * *--* *--* * *
| | | | | |
*--* *--+ +--* + +
PROG
(PARI) N=66; x='x+O('x^N); Vec(x*(1+2*x*(1-x^2+x^3)/((1+x)*(1-x)^3)))
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A(start, goal, n, k):
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def A333571(n, k):
if n == 1: return 1
s = 0
for i in range(1, n + 1):
for j in range(k * n - n + 1, k * n + 1):
s += A(i, j, k, n)
return s
def A333574(n):
return A333571(n, 2)
print([A333574(n) for n in range(1, 25)])
CROSSREFS
Column k=2 of A333571.
Cf. A333510.
Sequence in context: A094589 A071425 A115065 * A008804 A001307 A322010
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 27 2020
STATUS
approved