login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Hamiltonian paths in the n X 2 grid graph which start at any of the n vertices on left side of the graph and terminate at any of the n vertices on the right side.
2

%I #42 Sep 09 2024 15:34:51

%S 1,2,4,6,10,14,20,26,34,42,52,62,74,86,100,114,130,146,164,182,202,

%T 222,244,266,290,314,340,366,394,422,452,482,514,546,580,614,650,686,

%U 724,762,802,842,884,926,970,1014,1060,1106,1154,1202,1252,1302,1354,1406,1460

%N Number of Hamiltonian paths in the n X 2 grid graph which start at any of the n vertices on left side of the graph and terminate at any of the n vertices on the right side.

%C Conjecture: Numbers k such that A339399(k) = A103128(k). - _Wesley Ivan Hurt_, Nov 19 2021

%H Colin Barker, <a href="/A333574/b333574.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F G.f.: x*(1+2*x*(1-x^2+x^3)/((1+x)*(1-x)^3)).

%F From _Colin Barker_, Mar 27 2020: (Start)

%F a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5.

%F a(n) = (9 + (-1)^(1+n) - 4*n + 2*n^2) / 4 for n>1. (End)

%F E.g.f.: ((4 - x + x^2)*cosh(x) + (5 - x + x^2)*sinh(x) - 2*(2 + x))/2. - _Stefano Spezia_, Jun 14 2023

%e a(1) = 1;

%e +--+

%e a(2) = 2;

%e + + *--*

%e | | | |

%e *--* + +

%e a(3) = 4;

%e + + +--* *--+ *--*

%e | | | | | |

%e * * *--* *--* * *

%e | | | | | |

%e *--* *--+ +--* + +

%o (PARI) N=66; x='x+O('x^N); Vec(x*(1+2*x*(1-x^2+x^3)/((1+x)*(1-x)^3)))

%o (Python)

%o # Using graphillion

%o from graphillion import GraphSet

%o import graphillion.tutorial as tl

%o def A(start, goal, n, k):

%o universe = tl.grid(n - 1, k - 1)

%o GraphSet.set_universe(universe)

%o paths = GraphSet.paths(start, goal, is_hamilton=True)

%o return paths.len()

%o def A333571(n, k):

%o if n == 1: return 1

%o s = 0

%o for i in range(1, n + 1):

%o for j in range(k * n - n + 1, k * n + 1):

%o s += A(i, j, k, n)

%o return s

%o def A333574(n):

%o return A333571(n, 2)

%o print([A333574(n) for n in range(1, 25)])

%Y Column k=2 of A333571.

%Y Cf. A333510.

%Y Cf. A103128, A339399.

%K nonn,easy

%O 1,2

%A _Seiichi Manyama_, Mar 27 2020