login
A333548
Numbers k such that A005132(k-1) = k.
5
3, 11, 39, 248, 844, 2752, 57071, 58056875
OFFSET
1,1
COMMENTS
Subtracting 1 from k gives the index of a term A005132(k-1) = k in Recamán's sequence A005132 such that subtracting k would reach 0. This is not permitted, so we must add k instead, obtaining A005132(k) = 2*k.
If A005132(k-1) = k, A005132(k) = 2*k. The converse is not always true. For example, A005132(75) = 228 and A005132(76) = 228 - 76 = 152. - Seiichi Manyama, May 02 2020
EXAMPLE
A005132(10)=11, so 11 is a term (and A005132(11)=22).
PROG
(Python)
A333548_list, A005132_set, y = [], {0}, 0
for n in range(1, 10**10):
y -= n
if y <= 0 or y in A005132_set:
y += 2*n
A005132_set.add(y)
if y == n+1:
A333548_list.append(y) # Chai Wah Wu, May 02 2020
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, May 01 2020
EXTENSIONS
a(8) from Chai Wah Wu, May 02 2020
STATUS
approved