login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136775
Number of multiplex juggling sequences of length n, base state <1,1> and hand capacity 2.
3
1, 3, 11, 40, 145, 525, 1900, 6875, 24875, 90000, 325625, 1178125, 4262500, 15421875, 55796875, 201875000, 730390625, 2642578125, 9560937500, 34591796875, 125154296875, 452812500000, 1638291015625, 5927392578125, 21445507812500, 77590576171875
OFFSET
1,2
COMMENTS
Except for the initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - 3 S + S^2; see A291000. - Clark Kimberling, Aug 24 2017
LINKS
Carolina Benedetti, Christopher R. H. Hanusa, Pamela E. Harris, Alejandro H. Morales, Anthony Simpson, Kostant's partition function and magic multiplex juggling sequences, arXiv:2001.03219 [math.CO], 2020. See Table 1 p. 12.
S. Butler and R. Graham, Enumerating (multiplex) juggling sequences, arXiv:0801.2597 [math.CO], 2008.
P. E. Harris, E. Insko, L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055, 2014
FORMULA
G.f.: (x-2x^2+x^3)/(1-5x+5x^2).
a(n) = 5*a(n-1)-5*a(n-2) for n>3. - Colin Barker, Aug 31 2016
MATHEMATICA
CoefficientList[Series[(x^2-2x+1)/(5x^2-5x+1), {x, 0, 30}], x] (* Harvey P. Dale, Jun 22 2014 *)
PROG
(PARI) Vec((x-2*x^2+x^3)/(1-5*x+5*x^2) + O(x^30)) \\ Colin Barker, Aug 31 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 27); Coefficients(R!( (x-2*x^2+x^3)/(1-5*x+5*x^2))); // Marius A. Burtea, Jan 13 2020
CROSSREFS
Cf. A136776.
Sequence in context: A149062 A066979 A333548 * A108153 A010911 A052941
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 21 2008
STATUS
approved