login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333306
a(n) = sqrt(Pi/4)*2^A048881(2*n)*L(2*n) where L(s) = lim_{t->s} (t/2)!/((1-t)/2)!.
1
1, 1, -1, 9, -45, 1575, -42525, 3274425, -42567525, 5746615875, -488462349375, 102088631019375, -6431583754220625, 1923043542511966875, -336532619939594203125, 136295711075535652265625, -3952575621190533915703125, 2083007352367411373575546875
OFFSET
0,4
FORMULA
a(n) = Z(2*n)*A048896(2*n)/2 where Z(n) = Pi^n*(n*Zeta(1 - n))/((1 - n)*Zeta(n)) for n >= 1.
a(n) = (-1)^n*(2*n)!/((1 - 2*n)*A046161(2*n)).
A034386(2*n-2)/2 divides a(n), i.e., all odd primes <= 2*(n-1) divide a(n).
The number of distinct prime divisors of a(n) is A278617(n).
MAPLE
L := s -> limit((factorial(t/2)/factorial((1-t)/2)), t=s):
G := n -> 2^(add(i, i = convert(n+1, base, 2)) - 1): # A048896
a := s -> sqrt(Pi/4)*G(2*s)*L(2*s): seq(a(n), n=0..17);
MATHEMATICA
A333306[n_] := (-1)^n ((2 n)!/(1 - 2 n)) 2^(-2 n + DigitCount[2 n, 2, 1]);
Table[A333306[n], {n, 0, 17}]
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, May 17 2020
STATUS
approved