login
A333054
Numbers m such that r(m) > r(k) for all k < m, where r(m) = min(sigma(m)/m, sigma(m+1)/(m+1)), and sigma(m) is the sum of divisors of m (A000203).
1
1, 2, 8, 14, 44, 104, 495, 944, 4095, 5775, 5984, 21735, 98175, 862784, 4096575, 7194824, 14753024, 879207615, 1969789184, 2275962975, 3968862975, 12567844575, 39566665215, 44803620225, 77510285775, 125617830975, 162902829375
OFFSET
1,2
COMMENTS
The corresponding values of r(a(n)) are 1, 1.333..., 1.444..., 1.6, 1.733..., 1.828..., 1.890..., 1.970..., 1.999..., 2.044..., 2.085..., 2.120..., 2.181..., 2.243..., 2.248..., 2.252..., 2.360..., 2.397..., 2.407..., 2.408..., 2.411...
The least number m such that both m and m+1 are k-abundant (i.e., their abundancy indices sigma(m)/m > k and sigma(m+1)/(m+1) > k) is a term in this sequence. E.g., a(10) = 5775 = A096399(1).
a(28) > 5*10^11. - Amiram Eldar, Jan 02 2021
EXAMPLE
The values of min(sigma(k)/k, sigma(k+1)/(k+1)) for k = 1, 2, ... 8 are 1, 4/3, 4/3, 6/5, 6/5, 8/7, 8/7, 13/9. The record values in this range, 1, 4/3 and 13/9, are obtained at k = 1, 2, and 8.
MATHEMATICA
seq={}; rminmax = 0; r1 = 1; Do[r2 = DivisorSigma[1, n]/n; rmin = Min[r1, r2]; If[rmin > rminmax, rminmax = rmin; AppendTo[seq, n-1]]; r1 = r2, {n, 2, 10^6}]; seq
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Mar 06 2020
EXTENSIONS
a(22)-a(27) from Amiram Eldar, Jan 02 2021
STATUS
approved