OFFSET
1,6
COMMENTS
Maximum number of distinct prime factors of any one integer encountered on all possible paths from n to 1 when iterating with nondeterministic map k -> k - k/p, where p can be any of the prime factors of k.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65539
FORMULA
EXAMPLE
For n=15 we have five alternative paths from 15 to 1: {15, 10, 5, 4, 2, 1}, {15, 10, 8, 4, 2, 1}, {15, 12, 8, 4, 2, 1}, {15, 12, 6, 4, 2, 1}, {15, 12, 6, 3, 2, 1}. These form a lattice illustrated below:
15
/ \
/ \
10 12
/ \ / \
/ \ / \
5 8 6
\__ | __/|
\_|_/ |
4 3
\ /
\ /
2
|
1
With edges going from 15 towards 1, the maximum outdegree is 2, which occurs at nodes 15, 12, 10 and 6, therefore a(15) = 2.
MATHEMATICA
With[{s = Nest[Function[{a, n}, Append[a, Join @@ Table[Flatten@ Prepend[#, n] & /@ a[[n - n/p]], {p, FactorInteger[n][[All, 1]]}]]] @@ {#, Length@ # + 1} &, {{{1}}}, 105]}, Array[If[# == 1, 0, Max@ Tally[#][[All, -1]] &@ Union[Join @@ Map[Partition[#, 2, 1] &, s[[#]] ]][[All, 1]] ] &, Length@ s]] (* Michael De Vlieger, May 02 2020 *)
PROG
(PARI)
up_to = 105;
A332992list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2, up_to, v[n] = max(omega(n), vecmax(apply(p -> v[n-n/p], factor(n)[, 1]~)))); (v); };
v332992 = A332992list(up_to);
A332992(n) = v332992[n];
CROSSREFS
Cf. A002110 (positions of records and the first occurrence of each n).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 04 2020
STATUS
approved