login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximum outdegree in the graph formed by a subset of numbers in range 1 .. n with edge relation k -> k - k/p, where p can be any of the prime factors of k.
4

%I #27 May 02 2020 23:05:45

%S 0,1,1,1,1,2,2,1,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,1,3,2,

%T 3,2,2,2,2,2,2,3,3,2,3,2,2,2,3,2,2,2,2,2,2,2,2,2,2,3,3,3,3,1,3,3,3,2,

%U 3,3,3,2,2,2,3,2,3,3,3,2,2,2,2,3,2,3,3,2,2,3,3,2,3,2,3,2,2,3,3,2,2,3,3,2,3

%N Maximum outdegree in the graph formed by a subset of numbers in range 1 .. n with edge relation k -> k - k/p, where p can be any of the prime factors of k.

%C Maximum number of distinct prime factors of any one integer encountered on all possible paths from n to 1 when iterating with nondeterministic map k -> k - k/p, where p can be any of the prime factors of k.

%H Antti Karttunen, <a href="/A332992/b332992.txt">Table of n, a(n) for n = 1..65539</a>

%F a(n) = max(A001221(n), {Max a(n - n/p), for p prime and dividing n}).

%F For all odd primes p, a(p) = a(p-1).

%F For all n >= 0, a(A002110(n)) = n.

%e For n=15 we have five alternative paths from 15 to 1: {15, 10, 5, 4, 2, 1}, {15, 10, 8, 4, 2, 1}, {15, 12, 8, 4, 2, 1}, {15, 12, 6, 4, 2, 1}, {15, 12, 6, 3, 2, 1}. These form a lattice illustrated below:

%e 15

%e / \

%e / \

%e 10 12

%e / \ / \

%e / \ / \

%e 5 8 6

%e \__ | __/|

%e \_|_/ |

%e 4 3

%e \ /

%e \ /

%e 2

%e |

%e 1

%e With edges going from 15 towards 1, the maximum outdegree is 2, which occurs at nodes 15, 12, 10 and 6, therefore a(15) = 2.

%t With[{s = Nest[Function[{a, n}, Append[a, Join @@ Table[Flatten@ Prepend[#, n] & /@ a[[n - n/p]], {p, FactorInteger[n][[All, 1]]}]]] @@ {#, Length@ # + 1} &, {{{1}}}, 105]}, Array[If[# == 1, 0, Max@ Tally[#][[All, -1]] &@ Union[Join @@ Map[Partition[#, 2, 1] &, s[[#]] ]][[All, 1]] ] &, Length@ s]] (* _Michael De Vlieger_, May 02 2020 *)

%o (PARI)

%o up_to = 105;

%o A332992list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to, v[n] = max(omega(n),vecmax(apply(p -> v[n-n/p], factor(n)[, 1]~)))); (v); };

%o v332992 = A332992list(up_to);

%o A332992(n) = v332992[n];

%Y Cf. A001221, A064097, A332809, A332999 (max. indegree), A333123, A334111, A334144, A334184.

%Y Cf. A002110 (positions of records and the first occurrence of each n).

%K nonn

%O 1,6

%A _Antti Karttunen_, Apr 04 2020