login
A332611
Triangle read by rows: T(m,n) = number of quadrilateral regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).
2
0, 2, 8, 14, 36, 80, 34, 92, 144, 208, 90, 194, 280, 356, 504, 154, 336, 432, 520, 680, 856, 288, 554, 724, 824, 996, 1184, 1512, 462, 812, 1096, 1208, 1392, 1592, 1932, 2352, 742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640, 1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016
OFFSET
1,2
COMMENTS
See A331457 for illustrations.
FORMULA
The first column is A324043, for which there is an explicit formula.
No formula is known for column 2, which is A332607.
For m>=n>=3 we have the (new) theorem that T(m,n) = 4*(3*m*n-m-4*n) + 2*(V(m,m,1)-2*V(m,m,2)-m^2-4*m+6) + 2*(V(n,n,1)-2*V(n,n,2)-n^2-4*n+6) where V(m,n,q) = Sum_{i = 1..m, j = 1..n, gcd(i,j)=q} (m+1-i)*(n+1-j).
EXAMPLE
Triangle begins:
[0],
[2, 8],
[14, 36, 80],
[34, 92, 144, 208],
[90, 194, 280, 356, 504],
[154, 336, 432, 520, 680, 856],
[288, 554, 724, 824, 996, 1184, 1512],
[462, 812, 1096, 1208, 1392, 1592, 1932, 2352],
[742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640],
[1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016],
[1512, 2508, 3268, 3416, 3636, 3872, 4248, 4704, 5372, 6072, 7128],
[2074, 3252, 4416, 4576, 4808, 5056, 5444, 5912, 6592, 7304, 8372, 9616],
....
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved