OFFSET
1,1
EXAMPLE
a(2) = 9 since 9 and 10 are the least pair of 2 consecutive numbers that are norm-abundant in Gaussian integers, and 8 and 11 are not norm-abundant.
MATHEMATICA
normAbQ[z_] := Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 > 2*Abs[z]^2; n = 1; count = 0; max = 15; seq = Table[0, {max}]; While[count < max, n1 = n; If[normAbQ[n], While[normAbQ[++n1]]; d = n1 - n; If[d <= max && seq[[d]] == 0, count++; seq[[d]] = n]]; n = n1 + 1]; seq
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Feb 16 2020
STATUS
approved