OFFSET
1,2
COMMENTS
Numbers k such that N(sigma(k)) < 2*N(k) = 2*k^2, where sigma(k) = A103228(k) + i*A103229(k) is the sum of divisors of k in Gaussian integers (i is the imaginary unit), and N(z) = Re(z)^2 + Im(z)^2 is the norm of the complex number z.
The number of terms not exceeding 10^k for k = 1, 2, ... is 4, 30, 289, 2998, 30075, 298919, 2983713, 29925997, 299442606, 2992921174, ... Apparently this sequence has an asymptotic density of ~0.3.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
3 is norm-deficient since sigma(3) = 4 and N(4) = 4^2 = 16 < 2 * 3^2 = 18.
8 is norm-deficient since sigma(8) = -8 - 7*i and N(-8 - 7*i) = (-8)^2 + (-7)^2 = 113 < 2 * 8^2 = 128.
MATHEMATICA
normDefQ[z_] := Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 < 2*Abs[z]^2; Select[Range[200], normDefQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 16 2020
STATUS
approved